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Abstract. A high throughput virtual screening pipeline has been extended from 
single energetically minimized structure Molecular Mechanics/Generalized 
Born Surface Area (MM/GBSA) rescoring to ensemble-average MM/GBSA 
rescoring. For validation, the binding affinities of a series of antithrombin lig-
ands have been calculated by using the two MM/GBSA rescoring methods. The 
correlation coefficient (R2) of calculated and experimental binding free energies 
has been improved from 0.36 (for single-structure MM/GBSA rescoring) to 
0.69 (for ensemble-average one). Decomposition of the calculated binding free 
energy reveals the electrostatic interactions in both solute and solvent play an 
important role in determining the binding free energy. The increasing negative 
charge of the compounds provides a more favorable electrostatic energy change 
but creates a higher penalty for the solvation free energy. Such a penalty is 
compensated by the electrostatic energy change, which results in better binding 
affinity. The best binder has the highest ligand efficiency.  
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1 Introduction 

High throughput virtual screening is an important tool for the computer-aided drug 
discovery. We have developed a high throughput virtual screening pipeline for in-
silico screening of virtual compound database using high performance computing 
(HPC) [1]. The previous pipeline consists of four modules: receptor/target prepara-
tion, ligand preparation, VinaLC docking calculation [2], and single-structure 
MM/GBSA rescoring. All modules are paralleled to exploit typical cluster-type su-
percomputers. The MM/GBSA method is selected for rescoring because it is the fast-
est force-field based method that computes the free energy of binding, as compared to 
the other computational free energy methods, such as free energy perturbation (FEP) 
and thermodynamic integration (TI) methods [3]. The MM/GBSA method has been 
widely exploited in free energy calculations [4, 5]. One of the notable features of this 



pipeline is an automated receptor preparation scheme with unsupervised binding site 
identification, which enables automatically running of whole pipeline without too 
much human intervention. A similar approach has been developed by Professor Ho-
racio Perez-Sanchez and co-workers to improve drug discovery using massively par-
allel GPU hardware instead of supercomputers [6]. Their GPU-based program, 
BINDSURF [7], takes advantage of massively parallel and high arithmetic intensity 
of GUPs to speed-up the calculation in low cost desktop machine. 
 
In this study, we have extended our pipeline from single-structure to ensemble-
average MM/GSBA rescoring. To validate the new approach, we have gathered a 
panel of antithrombin ligands (Figure 1), including heparin and non-polysaccharide 
scaffold compounds. For the purpose of comparison, both single-structure and en-
semble-average MM/GSBA rescoring are employed in the binding affinity calcula-
tions of antithrombin ligands. We must point out that estimation/calculations of en-
tropy term are tricky. In most scenarios, the entropy term is neglected in the calcula-
tion for relative free binding energies. Quite a few researchers dispute the benefits of 
including the entropy term, which can be a major source of error due to the drawback 
of the entropy calculation method [8, 9], despite others who advocate its usage [10]. 
We choose to neglect the entropy term in our calculations. 
 

 
Fig. 1. Compounds targeting antithrombin. Compound NTP is a synthetic pentasaccharide 
compound from the crystal structure (PDB ID: 1AZX). 

Antithrombin is a glycoprotein that plays a crucial role in the regulation of blood 
coagulation by inactivating several enzymes of the coagulation system and, thus, is an 
important drug target for the anticoagulant treatment. Antithrombin has two major 
isoforms, α and β, in the blood circulation [11]. α-Antithrombin is the dominant form 
of antithrombin and consists of 432 amino acids with 4 glycosylation sites, where an 
oligosaccharide occupying each glycosylation sites [12]. Heparin is the first com-
pound that was identified and used as an anticoagulant and antithrombotic agent. It is 
a sulfated polysaccharide containing a specific pentasaccharide fragment (Figure 1, 
NTP) that binds and activates the antithrombin [13]. This binding localized the func-
tion of antithrombin to inhibition of serine proteases in the coagulation cascade in the 



bloodstream, which allows coagulant activity in damaged tissue outside the vascular 
system [12]. 
 
Due to increasing interests in clinical applications, computational studies have been 
carried out to investigate the structure and behavior of antithrombin. Verli and co-
workers performed molecular dynamics simulations to study the induced-fit mecha-
nism of the antithrombin-heparin interaction and effects of glycosylation on heparin 
binding [14, 15]. Several detailed conformational changes associated with heparin 
binding to antithrombin were revealed. They also confirmed an intermediate state 
between the native and activated forms of antithrombin. Because of the weak surface 
complementarity and the high charge density of the sulfated sugar chain, the docking 
of heparin to its protein partners presents a challenging task for computational dock-
ing. Wade and Bitomsky developed a protocol that can predict the heparin binding 
site correctly [16]. Navarro-Fernandez and colleagues screened a large database in 
silico and identified a new, non-polysaccharide scaffold able to interact with the hepa-
rin binding domain of antithrombin [17]. They predicted D-myo-inositol 3,4,5,6-
tetrakisphosphate (Figure1, L1C4) to strongly interact with antithrombin, which was 
confirmed by experimental binding affinity study. 

2 Method 

The MM/GBSA calculations are applied to the antithrombin (PDB ID: 1AZX) and its 
seven ligands (Figure 1) by using our in-house developed pipeline [1, 2] and Amber 
molecular simulation package [18]. The Amber forcefield f99SB [18] is employed in 
the calculation for the antithrombin receptor. Ligands use the Amber GAFF forcefield 
[19] as determined by the Antechamber program [20] in the Amber package. Partial 
charges of ligands are calculated using the AM1-BCC method [21]. The fourth mod-
ule of the pipeline is employed for the single-structure MM/GBSA calculation, where 
the receptor-ligand complexes are energetically minimized by the MM/GBSA method 
implemented in the Sander program of the Amber package [22]. The atomic radii 
developed by Onufriev and coworkers (Amber input parameter igb=5) are chosen for 
all GB calculations [23]. For the ensemble-average MM/GBSA rescoring, energetical-
ly minimized structures from single-structure MM/GBSA rescoring are served as 
initial structures. The systems are heated from 0 K to room temperature, 300 K. The 
MD simulations with a time step of 2 fs for the integration of the equations of motion 
are carried out at room temperature. The systems are equilibrated at room temperature 
for 500 ps. Each MD trajectory is followed to 100 ns after equilibrium. Binding af-
finities of antithrombin and its 7 ligands are calculated by post-processing the ensem-
bles of structures extracted from MD trajectories using MM/GBSA calculations. In 
the MM/GBSA calculation, the binding free energy between a receptor and a ligand is 
calculated using the following equations: 
 

∆Gbind =Gcomplex -Greceptor –Gligand                     (1) 
∆Gbind =∆H-T∆S≈∆Egas +∆Gsol -T∆S                (2) 
∆Egas = ∆Eint +∆EELE +∆EVDW    (3) 



∆Gsol = ∆GGB + ∆GSurf    (4) 
 
The binding free energy (∆Gbind) is decomposed into different energy terms. Because 
the structures of complex, receptor, and ligand are extracted from the same trajectory, 
the internal energy change (∆Eint) is canceled. Thus, the gas-phase interaction energy 
(∆Egas) between the receptor and the ligand is the sum of electrostatic (∆EELE) and 

van der Waals (∆EVDW) interaction energies. The solvation free energy (∆Gsol) is 

divided into the polar and non-polar energy terms. The polar solvation energy (∆GGB) 
is calculated by using GB model. The non-polar contribution is calculated based on 
the solvent-accessible surface area (∆GSurf). A value of 80 is used for the solvent die-
lectric constant and the solute dielectric constant is set to 1. The calculated binding 
free energy (∆Gbind) is the sum of the gas-phase interaction energy and solvation free 
energy because we neglect the entropy term. The experimental binding free energy is 
estimated from the experimental dissociation constant (Kd) by the equation: 
 

∆GExp =RT·ln(Kd)    (5) 
 
where R is the gas constant, and T is the temperature. 

3 Results and Discussion 

The calculated binding free energies of seven antithrombin ligands using the ensem-
ble-average MM/GBSA rescoring are shown in Table 1 together with their corre-
sponding experimental values. Each calculated binding free energy is averaged from 
snapshots extracted from 100 ns MD trajectory. Except for Compound L1C1, all the 
antithrombin ligands have experimental binding free energies. As determined experi-
mentally, Compound L1C4 is the best binder with a Kd value of 0.088 uM [17]. As 
predicted by the MM/GBSA method, Compound L1C4 has the most negative binding 
free energy (-308.01 kcal/mol), which is in agreement with the experimental results. 
The second best binder as predicted by the MM/GBSA calculation is Compound NTP 
with a calculated binding free energy of -279.57 kcal/mol, confirming the experi-
mental ranking relative to Compound L1C4. Compound L1C2 is predicted to have the 
worst binding free energy of the six ligands, which is also in agreement with its ex-
perimental ranking value. In summary, the MM/GBSA calculations rank the binding 
affinities of all six antithrombin ligands in same exact order as that of experimental 
binding free energy rankings.  
 
The calculated binding free energies of six antithrombin ligands using the ensemble-
average MM/GBSA rescoring have been plotted against the free energies derived 
from experimental dissociation constants. The correlation coefficient (R2) is 0.69, 
which indicates good correlation between the calculated and experimental values. As 
comparison, the correlation coefficient calculated by single-structure MM/GBSA is 
only 0.36. Compound NTP was predicted to be the best binder instead of Compound 
L1C4. Thus, using ensemble-average MM/GBSA rescoring method has significantly 



improved the accuracy of the prediction over the single-structure MM/GBSA 
rescoring. 

Table 1. Calculated and experimental binding free energies (kcal/mol) of antithrombin ligands. 

Cmpd ΔEELE ΔEVDW ΔEgas ΔGSurf ΔGGB  ΔGGB-ELE ΔGSol ΔGbind Kd(uM) ΔGExp 

L1C1 -552.67 -23.68 -576.35 -2.75 480.12 -72.55 477.37 -98.97 - - 

L1C2 -442.99 0.47 -442.52 -1.20 417.60 -25.39 416.41 -26.11 13700 -2.54 

L1C3 -836.77 -39.96 -876.73 -4.06 781.94 -54.83 777.88 -98.85 10.02 -6.81 

L1C4 -1599.09 33.02 -1566.07 -2.98 1261.05 -338.04 1258.07 -308.01 0.088 -9.62 

L1C5 -613.30 -19.00 -632.31 -2.57 525.82 -87.48 523.25 -109.06 0.69 -8.40 

L1C6 -818.73 8.21 -810.52 -1.54 752.94 -65.79 751.41 -59.11 17.52 -6.48 

NTP -2598.87 -60.89 -2659.76 -7.58 2387.77 -211.09 2380.20 -279.57 0.104 -9.52 

 
As shown in Figure 1, all antithrombin 
ligands contain negatively charged 
groups, suggesting electrostatic interac-
tions should be a key factor in the binding 
affinity. Compound NTP has a total 
charge of -11 and Compound L1C4 has a 
total charge of -8. By decomposition of 
the binding free energy, Compound NTP 
and L1C4 have the largest electrostatic 
energy changes upon binding in both gas 
phase (ΔEELE) and GB solvent (ΔGGB-ELE). 
The energy change upon binding in gas 
phase is equivalent to the energy change 
upon binding for the solute. Thus, in oth-
er words, Compound NTP and L1C4 
have the largest electrostatic energy 
changes upon binding in solute and sol-
vent. In contrast, Compound L1C2 has the smallest electrostatic energy changes in 
solute and solvent. Although Compound L1C4 has the least favorable of van der 
Waals energy change upon binding, the electrostatic energy change compensates sig-
nificantly. For all ligands, the van der Waals energy changes (ΔEVDW) upon binding 
are less than the electrostatic energy changes (ΔEELE) by 1-2 orders of magnitude. The 
contribution of the van der Waals energy change has been overpowered by the elec-
trostatic energy change. Non-polar contribution of solvation free energy of the Com-
pound NTP and L1C3 are more negative than that of the other compounds because 
the sizes of Compound NTP and L1C3 are larger than the other compounds. Never-
theless, non-polar contributions for all compounds are small. The non-polar contribu-
tion is overwhelmed by the polar contribution of solvation free energy. Thus, the two 
major factors to determine the binding affinity are the electrostatic energy change and 
solvation free energy change. The larger the total charge of the compound, the larger 
the penalty cost is for solvation free energy. However, high penalty for large total 
charge of compound has been paid by the large favorable electrostatic energy chang-

Fig. 2. The scatter plot of calculated 
MM/GBSA binding free energy versus exper-
imental binding affinity estimated from disso-
ciation constant 

y"="0.0186x"*"4.4952"
R²"="0.69"

!11.0%
!10.0%
!9.0%
!8.0%
!7.0%
!6.0%
!5.0%
!4.0%
!3.0%
!2.0%

!350% !300% !250% !200% !150% !100% !50% 0%

Δ
GE

XP
""(
KC

al
/M

ol
)"

ΔGBind(Kcal/Mol)"



es. Although the electrostatic energy change of Compound L1C4 is less than that of 
Compound NTP, Compound L1C4 needs less compensation for the solvation free 
energy. Thus, Compound L1C4 is a better binder than Compound NTP. 
 
Hydrogen bonding analysis determines the numbers of hydrogen bonds to antithrom-
bin that are persistent at >20% of the time. For Compound NTP 40 hydrogen bonds 
are to antithrombin while L1C4 has 25 hydrogen bonds. For Compounds L1C1, 
L1C2, L1C3, L1C5, and L1C6, that number of hydrogen bonds are 5, 10, 12, 12, and 
12 respectively. Taking the molecular weight into account and using a similar ap-
proach as Reynolds’ ligand efficiency method [24], Compound L1C4 has the highest 
ligand efficiency.  
 

 
Fig. 3. Initial structures of Compounds L1C4 (A) and NTP (B) complexed with antithrombin. 

Compound L1C4 forms double hydrogen bonds with Arg47 (Figure 3A). One hydro-
gen bond (O6-HH21-NH2) has 94.81% persistence, and the other one (O6-HE-NE) 
has 89.55%. The average hydrogen bond distances between the heavy atoms are 2.74 
Å and 2.70 Å, respectively.  Compound L1C4 has strong hydrogen bonds with Arg47, 
and one of the four phosphate groups from Compound L1C4 is locked to the Arg47. 
According to the hydrogen bonding analysis, Compound L1C4 is also hydrogen 
bonded to Arg46, Arg13, Lys114, Lys11, Lys125, and Asn45, which are key residues 
to the binding process. We found that the binding of Compound L1C4 to antithrombin 
is non-specific. Except for the phosphate group locked to Arg47, the other three phos-
phate groups of Compound L1C4 can rotate so that key residues can form hydrogen 
bonds to different oxygen atoms of phosphate at different times during the MD trajec-
tory. Notably, Arg13 starts far away from Compound L1C4 in the initial confor-
mation. After 8 ns of MD simulation, Arg13 begins to make hydrogen bonds with the 
phosphate group of Compound L1C4, which suggests that long-time MD simulations 
are essential to obtaining accurate binding affinities. As shown in Figure 3B, Com-
pound NTP makes hydrogen bonds to antithrombin mainly via its negatively charged 
sulfate groups. Compound NTP forms hydrogen bonds with Arg13, Arg129, Arg47, 
and Asn45 with high persistence (70~88%). Compound NTP also forms hydrogen 
bonds with Arg132, Lys125, and Thr44 with medium persistence (43~66%), and 
forms relatively weak hydrogen bonds with Arg46, LYS114 and LYS11.  
 

A B 



Judging from the hydrogen bond analysis on Compound L1C4 and NTP, Arg47, 
Arg13, and Asn45 play crucial roles in the antithrombin binding process. Antithrom-
bin provides multiple sulfate/phosphate binding sites consisting of mostly positively 
charged residues (arginine, lysine) and neutral charged residues that can provide rich 
hydrogen bond donors/acceptors (asparagine). All four phosphate groups of Com-
pound L1C4 form hydrogen bonds with antithrombin while not all the sulfate groups 
of Compound NTP can form hydrogen bonds with antithrombin. As pointed out 
above, introducing positively charged group in the ligand will result in the penalty in 
solvation free energy. If adding a positively charged group cannot form favorable 
interactions (e.g. hydrogen bonding), ligand efficiency will be reduced, explaining 
why that Compound L1C4 has higher ligand efficiency than Compound NTP.  
 
Compare the results from single-structure and ensemble-average MM/GBSA 
rescoring, the latter yields much accurate results. The ensemble-average MM/GBSA 
rescoring ranks the binding affinities of antithrombin ligands in the order that agrees 
with the experimental results. The advantage of ensemble-average MM/GBSA 
rescoring is that the binding affinity is averaged from ensemble of structures extracted 
from long-time MD simulations. Long-time MD simulations can explore more con-
figuration space and find energetically favorable configurations, which could offset 
the bias of initial structures. This can be verified in the MD trajectory of Compound 
L1C4. Arg13 was observed to form hydrogen bonds with the phosphate group of 
Compound L1C4 after 8 ns of MD simulation. Our virtual screening pipeline uses a 
down-select scheme to screening large virtual compound database. A standard proce-
dure to run the pipeline is to down-select compounds after they pass each screening 
methods implemented in the pipeline. The first screening method in the pipeline is 
VinaLC docking, which can dock one million compounds in 1.4 h on about 15K 
CPUs [2]. Top ranked poses of down-selected ligands after docking will be rescored 
using single-structure MM/GBSA rescoring method. Finally, the most expensive en-
semble-average MM/GBSA rescoring method in the pipeline can be applied to the 
ligands down-selected after single-structure MM/GBSA rescoring. 

4 Conclusion 

In this article, we introduce a new addition, ensemble-average MM/GBSA rescoring, 
to our virtual screening pipeline. As a proof of concept, we calculated the binding 
affinities of seven antithrombin ligands by employing the previous single-structure 
MM/GBSA rescoring method and newly developed ensemble-average MM/GBSA 
rescoring method. The correlation coefficient of calculated and experimental binding 
affinities was improved from 0.36 to 0.69 when uses ensemble-average MM/GBSA 
rescoring. The rank order of calculated binding free energies using ensemble-average 
MM/GBSA rescoring exactly matches the experimentally derived free energies. We 
demonstrate that long-time MD trajectory can explore more configuration space and 
find energetically favorable configurations so that it can offset the bias of initial struc-
tures and improve the accuracy of binding affinity prediction. The electrostatic inter-
actions in both solute and solvent contribute favorably to the binding free energy. 
Adding more negatively charged groups to the ligand provides more favorable elec-



trostatic energy change. However, it creates a higher penalty for the solvation free 
energy simultaneously. The penalty can be compensated for by forming more hydro-
gen bonds as more negatively charged groups are added into the ligand. Compound 
L1C4 has higher ligand efficiency because it uses all its phosphate groups to form 
hydrogen bonds with antithrombin while Compound NTP does not. 
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